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INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 1991, VOL. 10, No. 3,287-317 

Quantum beat spectroscopy of molecules 

by E. HACK and J. R. HUBER 
Physikalisch-Chemisches Institut der Universitat Zurich, 
Winterthurerstrasse 190, CH-8057 Zurich, Switzerland 

This review deals with molecular high-resolution spectroscopy based on the 
quantum beat phenomenon. Applications of the essentially Doppler-free quantum 
beat technique are presented with special emphasis on the theoretical description. 
After an historical introduction and a general discussion of interference experi- 
ments, we discuss the expressions to describe the time-resolved fluorescence of a 
molecule following well defined laser excitation. Our general treatment for the 
characterization of the excited superposition state enables us to demonstrate the 
versatility of the method by identifying the excited molecular eigenstates with, for 
example, Zeeman levels or fine- and hyperfine-structure levels. In addition to the 
spectroscopic applications of quantum beat experiments in determining molecular 
structure parameters, we address the applications to molecular dynamics and 
statistical properties of molecular level structures. 

1. Introduction 
1.1. Historical notes 

In 1923 fluorescence of mercury vapour was known to be polarized, but different 
workers had measured different polarization degrees. This discrepancy was experi- 
mentally resolved when Wood and Ellet (1923) showed that a weak magnetic field 
already strongly influences the polarization degree. Without a magnetic field, and the 
Earth‘s magnetic field carefully compensated, they observed an almost fully polarized 
resonance emission whilst the polarization was destroyed completely when a magnetic 
field of only two gauss, oriented perpendicular to the electric vector of the exciting light, 
was introduced. The authors argued that the Zeeman effect, known to resolve spectral 
lines into polarized components, would not manifest itself at such vanishingly small 
field strengths. Instead, they attributed their findings to a ‘new magneto-optic effect, 
probably connected with the orientation of electron orbits in the magnetic field‘. 

In his work, Hanle (1923, 1924) explained Wood’s observation by a precession of 
the radiating source atoms. Hanle (1925) recognized the relation to the Zeeman effect 
and interpreted the phenomenon, today known as the Hanle effect (Corney 1977), in 
terms of Bohr’s quantum theory. Magnetic levels of a given electronic state, he argued, 
are well resolved by the Zeeman effect at high field but overlap at low field due to the 
life-time broadening. Under this condition neither a full energetic separation nor a 
complete directional quantization of the magnetic levels is possible. Hanle (1925) 
concluded that the transitions from different magnetic levels of the excited state ‘can 
occur within a single atom and interfere with each other’. Consequently, the Hanle 
effect is due to a single particle interference. 

Within the framework of Schrodinger’s quantum theory the atom is said to be 
excited into a superposition of magnetic states which radiate coherently. The 
underlying theory of resonant light scattering was thoroughly developed by Breit 
(1933) in extending the work of Weisskopf and Wigner (1930). Figure 1 illustrates the 
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288 E .  Hack and J .  R. Huber 

Figure 1 .  Diagram of a four level system. A photon with polarization f is absorbed by the 
ground state lo), excites a superposition of states 11) and 12), and is re-emitted with 
polarization g, leaving the molecule in the final state 13). 

situation where a photon of polarization f is  absorbed by an atom in the ground state 
10) and reemitted with polarization g, leaving the atom in the final state 13). Breit (1933) 
derived expressions for the intensity and polarization of light in a resonance scattering 
process from well resolved or overlapping excited states (11) and 12)). His result was 
reformulated by Franken (1961) in his clear and concise explanation of level-crossing 
experiments (Colegrove et al. 1959). He assumed the first order time-dependent 
perturbation theory to be adequate and obtained for the state of the atom after pulse 
excitation the superposition 

The states l j )  of energy h a j  are excited with the probability amplitude A,,, which is 
proportional to the transition dipole moment ( j  IfplO), and the states are exponentially 
damped by a common rate constant r (Franken 1961). The emission rate R(f;g,  t )  for 
photons of polarization g is then 

The interference effect is described by the terms with j # j ’ .  It vanishes unless the two 
levels ‘share’ a photon in absorption and emission. The effect is termed quantum beat 
since the fluorescence intensity is modulated according to the frequency ojr - oj. This 
time dependence was not given explicitly by Breit (1933). Franken (1961) integrated the 
emission rate given by equation (2) with respect to time in order to obtain an expression 
adequate to the steady-state level-crossing experiment. 

Before reviewing time-integrated and time-resolved (quantum beat) experiments in 
chapter 2 we discuss some general aspects of interference experiments in the next 
section. 
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Quantum beat spectroscopy 289 

1.2. General aspects of interference experiments 
As depicted in figure 1 the excited atomic states act as radiation sources very much 

like the two slits in Young’s interference experiment. After the detection of the photon, 
there is no way to decide from which source (slit) it has been emitted, since the final state 
of the atom is common to both emission channels. An interference effect is observed 
when a process occurs via two (or more) paths which are indistinguishable by the actual 
experimental arrangement, and which are associated with a well-defined relative phase. 
This phase relation is created by the excitation process and expressed by the 
superposition of the source states. Interference is always connected with the 
superposition principle which, in mathematical terms, is based on the linearity of the 
dynamical (Schrodinger-) equation governing the evolution of the system. 

In describing an interference experiment the detection step must be taken into 
account since the experimental arrangement decides whether the interference effect is 
observed or not. For definiteness we treat the intensity measurement in a simple field- 
theoretic description (Walls 1977) where only two modes of the radiation field are 
considered. Denoting the state of the field by Inm) where n and m are the number of 
photons of the same polarization g in  mode 1 and 2, respectively, the composed system 
can be described by a direct product of the atomic excited state and the vacuum state 

Y ( t  =O) = C f i O l 1 )  +fiOl2>10 100)- (3) 

The atomic ground state, not being radiative, is not considered. In the course of time 
evolution the superposition of the atomic states is transferred to the field-states and the 
state of the composed system is 

As the measurement is performed on the field, the detection is expressed by Glauber’s 
operator 8-8’ (Glauber 1963), the relevant portion of which is given by 

&-&+ =(K:a] + K ; a ~ ) ( K , a ,  +Jc2a2). (5 )  

The a,[a~] are annihilation [creation] operators for photons in mode i and the I C ~  

denote time-independent proportionality constants. We do not specify them but 
interpret them as detector efficiency parameters for the corresponding modes. The 
intensity expected from the state in equation (4) is expressed as Z ( t )  = (@(t)[&-&+l@(t)) ,  
reading 

(6)  w= I~lg31flo + exp(-i(o2 - W l ) t )  K2g32f2ol2. 

The detection operator 8-8’ leads to the sum of two terms and is appropriate to 
describe an interference experiment. If we were to decide ‘which path’ the photon took, 
we would have to detect photons from one of the two modes, thus using .laj instead of 
8-67’. No interference would show up since one path is blocked. In other words, the 
respective operators for measuring the interference pattern or the path do not commute 
and hence do not represent compatible measurements but complementary ones. This 
complementarity has been tested in ‘which-way-experiments’ using micromasers 
(Hellmuth et al. 1987, Scully and Walther 1989). 

An equal probability for the two paths in equation (6)  yields a complete modulation 
of the intensity while preference of one path over the other reduces the modulation 
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290 E.  Hack and J .  R .  Huber 

depth. Thus, the relative probability for the processes ]0)+11)+13) and 10)+12)+13) 
which depends on preparation U;.,), emission (g,j) and detection ( x j )  determines the 
modulation depth. 

The restriction to one-photon states (Weisskopf and Wigner 1930) yields a one-to- 
one correspondence between the atomic and field states. Therefore, the intensity in 
equation (6) is given exclusively in atomic (and detector) variables like Franken’s result 
in equation (2). This equation is put into the form 

I ( 3 1 ~ l w )  I z9 (7) 

where D is the detection operator. In some instances there exists a so-called ‘doorway- 
state’ (Rhodes 1983), i.e. a state Is) that is an eigenfunction of an operator which does 
not commute with the atomic Hamilton operator and that is the only state coupled to 
13) by D. Then equation (7) simplifies to 

W )  l < s l W > l 2 .  (8) 
This is the probability of finding the atom in the (nonstationary) state Is) at time t and 
the quantum beat is interpreted as a modulation of the Is) state population. 

There have been attempts to interpret quantum beats as an interference effect from 
an ensemble of precessing dipoles radiating according to classical or neo-classical 
theories (Hanle 1924, Chow et al. 1975, Herman et al. 1975). The quantum mechanical 
single-particle interpretation is, however, conceptually much simpler and more 
versatile, being applicable to other than radiation effects (Hanle 1925, Podgoreckij and 
Chrustalev 1964, Dodd and Series 1978). There exist also quantum mechanical 
ensemble effects such as super-radiance or radiation trapping (Dicke 1954) but they will 
not be considered in this review. The single-particle nature of the superposition 
principle in quantum mechanics was observed in beam-experiments with low particle 
flows (Andra 1979) and is today tested directly with micromaser experiments (Walther 
1988). 

2. Quantum beat experiments 
2.1. Realization 

Using steady-state techniques to monitor the interference effect, the cross-terms in 
equation (2) are smoothed except those of degenerate states l j )  and I j ’ ) (wj-wj .=O 
zero-frequency quantum beat). This fact is used in the level-crossing experiment 
(Colegrove et al. 1959, Franken 1961) where the signal as a function of the magnetic 
field strength shows resonances whenever the coherently excited Zeeman substates 
become degenerate. The special case of degeneracy at zero field gives rise to the Hanle 
effect (Corney 1977) mentioned above. 

If the intensity of the exciting light is modulated a different resonance effect emerges 
whenever the modulation frequency matches the excited states energy separation 
wj-  wj. (Aleksandrov 1963, Corney and Series 1964b, Konstantinov and Perel 1964). 
For a discussion of this and other kinds of resonances the reader is referred to the 
review articles of Podgoreckij and Chrustalev (1964) and Zare (1971) on interference 
experiments, Happer and Gupta (1978) on level-crossing methods and Haroche (1976) 
and Aleksandrov (1978) on time-resolved (quantum beat) experiments. 

A time-resolved experiment requires a preparation time of the superposition state 
which is well defined and short with respect to the quantum beat periods. Then, the 
excitation step can be separated from the subsequent free time evolution of the system. 
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Quantum beat spectroscopy 29 1 

These conditions are met by a short pulse excitation or by a sudden change in the 
environment such as the sudden application of an external field (Series 1964, Drake 
et a!. 1975; see section 3.3). 

Quantum beats in the fluorescence emission after light-pulse excitation had been 
predicted by Franken (1961) and Corney and Series (1964a) and were first observed by 
Aleksandrov (1964) and Dodd et al. (1964). Collisional excitation induced in crossed 
atom and electron beams has been used by Hadeishi and Nierenberg (1965) while 
Andra (1970) introduced collisional excitation by passage of fast ion beams through 
thin carbon foils. The two techniques have been reviewed by Fowler (1979) and Andra 
(1979), respectively. 

The interest in molecular quantum beat spectroscopy arose with the advent of 
pulsed tunable dye lasers (Gornik et al. 1972, Schenck et al. 1973). In combination with 
high intensity and short pulse duration, dye laser systems provide the high selectivity 
required to prepare superposition states in a polyatomic molecule. Before addressing 
laser quantum beat spectroscopy in detail, some remarks on quantum beat detection 
are in order. 

As expressed by equation (6), the interference effect is observed provided the 
detector efficiencies for both channels, I C ~  and I C ~ ,  are not zero. Hence, every detection 
system that assures the indistinguishability of the paths can, in principle, be used as a 
measuring device for quantum beats. Recording the fluorescence from a superposition 
state (cf. section 1.2) is conceptually the simplest detection method. It can be performed 
by time-delayed photon detection, time-resolved emission measurement or by 
transforming the temporal modulation to a spatial one in a beam experiment. Beside 
these ‘passive’ methods based on spontaneous emission, ‘active’ detection techniques 
may be applied by which the superposition state is probed with an induced transition 
after a variable delay time. Along this line, modulations in resonance absorption from 
the excited superposition state were observed as a function of the delay of the probe 
laser pulse (Ducas et al. 1975) and stimulated emission techniques were used to probe 
quantum beats by Lange and Mlynek (1978) and C6te et al. (1989). Recently, Szatmari 
and Schafer (1987) observed quantum beats in laser gain measurements which were 
shown to arise from coherences in the ground state of the laser medium (Walmsley et al. 
1988). 

Superpositions of highly excited, non-fluorescing Rydberg states are detected using 
bound-free transitions. These can be induced by sensitive photoionization (Zygan- 
Maus and Wolter 1978, Georges and Lambropoulos 1978) or field ionization 
techniques (Leuchs and Walther 1979). The quantum beats manifest themselves in the 
total number of electrons recorded as a function of the delay between excitation pulse 
and ionization pulse. Quantum beats are also predicted in molecular autoionization 
(Morgenstern 1987, Bordas et al. 1989) but have not yet been detected. 

2.2. Laser quantum beat spectroscopy 
For polyatomic molecules the laser quantum beat spectroscopy is the most 

powerful quantum beat technique and particularly convenient if the laser-excited 
superposition state can be monitored directly by fluorescence. Pulsed tuneable dye 
lasers in combination with cold molecular pulses from supersonic jets provide the 
favourable conditions for a selective, high-resolution molecular spectroscopy. 

The laser pulse duration, usually in the ns to fs range, sets the time scale of the 
dynamical processes studied and it has to be shorter than the lifetime of the excited 
states, the quantum beat periods and the relaxation or dephasing times. On the other 
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292 E. Hack and J .  R .  Huber 

hand, the pulse length limits the spectral range in which molecular states are excited 
coherently. A Fourier-limited pulse of duration Tpulsc has a coherent bandwidth of 

and coherent excitation of energy eigenstates is possible only if the pulse 
Fourier spectrum contains components at the appropriate frequencies (Franken 1961). 
Laser pulse coherence properties and their influence on the quantum beat signal have 
been discussed by several authors (Haroche 1976, Langhoff 1977, Silverman et al. 
1978a, Sue and Mukamel 1984). These properties affect only the efficiency by which a 
superposition is created and not the beat frequency since the latter is given by the free 
molecular evolution. The information obtained from the beat frequencies is thus free 
from virtually all experimental parameters. Most important, there is essentially no 
Doppler effect owing to the fact that the quantum beat frequencies are very much 
smaller than the optical frequencies and saturation effects are negligible in broadband 
pulsed excitation (Silverman et al. 1978a). 

Using a fast Fourier transform (FT) routine, the beat frequencies can readily be 
extracted from the signal. The real part of the FT reveals Lorentzian lines with a width 
of 2 r  given by the exponential decay constant at the frequencies 0, f vi (see figure 2). 
The resolution is thus lifetime-limited but can further be reduced by biasing the signal 
in favour of the long lived species of the ensemble (Krist et al. 1977, Dodd and Series 
1978, Bitto and Huber 1990). 

The expressions for the two-level superposition and the fluorescence intensity given 
in equations ( 1 )  and (2) are now extended to the more general form of multi-level 
excitation of a molecular ensemble 

Similar formulae have been given by many authors (e.g. Franken 1961, Macek 1970, 
Haroche 1976, Luypaert and Van Craen 1977, Dodd and Series 1978, Hack et al. 1991). 
To also account for incoherent superposition of quantum beat signals from different 
ground states in the moleculer ensemble, we introduced the weighted summation (p,) 
over g. Considering broad band excitation, the laser pulse Fourier components are not 
included explicitly. The first order transitions are determined by the dipole operator p 
and the polarizations of the laser (cL) and the detector (cD). For different energy 
eigenstates different phenomenological damping rates yn  are assumed. 

The signal described by equation (10) corresponds to a sum of expectation values 

9 

of the fluorescence monitoring operator 

Expressed more generally, we write 
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0 2 4 
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10 20 
Frequency (MHz) 

(b) 

Figure 2. (a) Fluorescence decay with superimposed quantum beats. The experiment was 
performed on a rovibronic S ,  state of propynal. The real part of the Fourier transform (b) 
reveals two beat frequencies. 

where the density matrix at time t = 0 is given by 

P(0) =I IrtLlg)pg<glCIr~L1+. (14) 
9 

The density matrix formulation (Barrat and Cohen-Tannoudji 1961) is used for general 
dynamical considerations and is indeed indispensable if relaxation mechanisms are 
rigorously treated (Lendi 1980, Kono et al. 1981, Schlag et al. 1982). The density matrix 
describing an open quantum system obeys the master equation 

p = - i[H, p] -+{A, p}.  (15) 
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294 E. Hack and J .  R. Huber 

The first term corresponds to the free time evolution while the second accounts for 
damping, dissipation and dephasing phenomena which are observed in large molecules 
(cf. section 3.5). However, for spectroscopic evaluation of quantum beats equation (10) 
is sufficient and will be applied in the next chapter to various types of excited molecular 
states. 

While equation (10) exhibits the interference character of the signal through the 
superposition state cross terms, it contains implicitly the spatial distribution of the 
resonance fluorescence through the polarization vectors. From the point of view of 
resonance scattering Mukamel and Jortner (1977) used the formalism of collision 
theory to describe the spatial redistribution of light after the scattering of a light wave 
packet. In spherical tensor notation, perturbation factors or perturbed angular 
correlations (Bosse and Gabriel 1974) are used and the isotropic and anisotropic 
radiation distribution after photon scattering is given by multipoles of rank smaller 
than two (cf. section 3.4). This technique is particularly powerful when molecular 
angular momentum states are considered (Fano and Macek 1973, Haroche 1976, 
Silverman et al. 1978b, Blum 1981). 

3. Molecular quantum beat spectroscopy 
3.1. Preliminaries 

The laser quantum beat experiments reviewed in this chapter are discussed with 
regard to the nature of the closely spaced, coherently excited levels. Accordingly, 
sections 3.2 and 3.3 address quantum beats from Zeeman split levels which are induced 
by an external magnetic or electric field. The coherent excitation of fine or hyperfine 
levels without an external field is treated in section 3.4 and multilevel quantum beats in 
polyatomic molecules with emphasis on their dynamical and statistical features are 
discussed in section 3.5. For an account on experimental aspects of molecular quantum 
beat spectroscopy the reader is referred to a recent article by Bitto and Huber (1990). 

3.2, Pure Zeeman and Stark quantum beats 
Pure field-induced quantum beats arise from a superposition of magnetic sublevels 

of a single molecular state split by an external magnetic or electric field. The Hanle 
effect in mind, the first quantum beat experiments, were performed on Zeeman triplets 
of atoms (e.g. 3P,-term of Cd: Aleksandrov 1964; 3P,-term of Hg: Dodd et al. 
1964; 3P1-term of Yb: Gornik et al. 1972; 'P,-level of Ba and Ca: Schenck et al. 1973) 
and the I, (B3nO) molecule (Wallenstein et al. 1974). Figure 3 shows isolated states of 
angular momentum F which are split into 2F + 1 equally spaced sublevels due to the 
magnetic interaction 

Hmag= -gFpEF* B. (16) 

Taking the direction of Bas the quantization axis, a laser pulse of rr-polarization (cLIB) 
will excite a superposition of levels IFM,+ 1) from each of the ground state levels 
IFOM,). According to these A M = 2  coherences and the linear Zeeman effect, the 
fluorescence will be modulated at the single frequency 

= 2gFpEB/k (17) 

that is twice the Larmor frequency. From pure Zeeman quantum beats the Land6 
g-factors of the excited angular momentum state can be extracted as demonstrated for 
atoms, diatomic molecules (I,: Wallenstein et al. 1974; OH: Lebow et al. 1979) and for 
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L E 

- -1  - -2 

0 -  
- 1  - 
- 2  - 

Figure 3. Zeeman quantum beats after c-polarized excitation. The A M  = 2 quantum beats are 
illustrated by the coherent excitation of the states IF = 2, M = 2) and IF = 2, M = 0) from a 
ground state IF = 2, M ,  = 1). 

polyatomic molecules such as NO, (Brucat and Zare 1983), SO, (Watanabe et al. 
1983a, b, 1985), CS, (Loge et al. 1986) and propynal HCCCHO (Dubs et al. 1986a). 

At field strengths where the Zeeman splitting becomes comparable to the energy 
separation of molecular eigenstates (cf. figure 4) the off-diagonal elements induce 
appreciable mixing and, as a consequence, the linear tuning of magnetic levels is 
distorted. If spin-orbit coupling between Born-Oppenheimer singlet Isi) and triplet Itl) 
states is operative, the energy eigenvalues are obtained from the Hamilton matrix 

In this case the Hamiltonian of equation (1 6) is not diagonal in the molecular eigenstate 
basis and Zeeman beat frequencies yield in addition to the Land6 g-factors the coupling 
strength oil as well as the zero-field separation of the molecular eigenstates (Dubs et al. 
1986a). Moreover, from the time-resolved decay kinetics their lifetimes are obtained. 

Quantum beats induced by an external electric field are in many respects closely 
related to Zeeman quantum beats. However, the Stark effect of an isolated angular 
momentum state is of second order and quadratic in the field strength 8 as opposed to 
the linear, first-order Zeeman effect. The energy shift E,, of a state IJM) due to the 
interaction 

He, = - PB, (19) 
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M 
3 

2 

1 

0 

-1 

-2 
-3 

3 
0 
-1 

-2 

-3 
I I 
0 B 

magnetic field 

Figure 4. Zeeman effect on molecular eigenstates. Born-Oppenheimer singlet Isi) and triplet 
It,) states show a linear Zeeman effect as indicated by the broken lines. The mixing of the 
two states by spin-orbit coupling results in the molecular eigenstates Ik) and Ik') which 
tune (avoiding level crossings) as shown by the solid lines. 

can generally be expressed by (Townes and Schawlow 1955) 

Ee,(J, M)=C (Ai(J) + Bi(J)M 2)~2g2, (20) 
I 

where p i  is the projection of the dipole moment vector p on to the ith principal axis of 
the molecule. The factors Ai  and Bi, expressed as perturbation series, contain the 
energetic separations to states coupled by pi and hence depend on the molecular 
structure parameters such as the rotational constants. Owing to the fact that states with 
equal IM( remain degenerate and tune quadratically with the field strength 6, we 
observe J -  1 different pure AM =2  Stark quantum beat frequencies (cLIS)  which are 
given by 

o ( M  + 2, M )  =I Bi4(M + 1)p2&2, 0 < M < J -2. (21) 
i 

Thus, given the experimental arrangement shown in figure 5,  a regularly spaced 
multiplet of lines appears in the Fourier transform spectrum as displayed in figure 6. 
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D 
E I 

f 

Figure 5. Experimental arrangement for measurements of Stark quantum beats. The laser 
beam, the detection axis and the molecular beam (expanding from valve V) are mutually 
orthogonal. The linear polarizations of the laser cL and the detector d' are chosen 
perpendicular to the field vector 1. The fluorescence is detected through a transparent 
electrode of the capacitor. 

I 
10 20 30 40 MHz 

(4 

5 MHz 5 10 

(4 
Figure 6. Spectra of pure A M  = 2 Stark quantum beats showing regularly spaced multiplets of 

lines. The measurements were performed on rotational states of deuterated propynal 
HCCCDO with (a) 5=3, b= 1.5 kVcm-', (b) J=5, b=2.0kVcm-' and (c) 5=6, 
d=2.5kVcm-' (Hack et al. 1991). 
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Stark quantum beat spectroscopy, introduced to measure atomic polarizabilities 
(Hese et al. 1977), has been applied to determine the permanent electric dipole moment 
of molecules in different vibrational states. Diatomic molecules, having only one dipole 
component p (along the internuclear axis) and a symmetric top rotational structure in 
'Z-states lend themselves for a direct analytic evaluation (Brieger et al. 1980 and 1983 
on LiH and LID; Brieger et al. 1981 on NaH; Schweda et al. 1985 on BaO; Biisener et al. 
1987 on MgO). The Stark shifts are 

E,,(J, M )  = (A(J) + B(J)M2)p2€2, 

1 3 
B(J) = ~ 

B" 2 4 5  + 1)(25 - 1)(25 + 3) ' 

where B, is the rotational constant of the vibrational state Iv). Obviously, the strongest 
tuning is observed with the lowest J-states. 

Corresponding analytic expressions for the tuning coefficients of slightly 
asymmetric top molecules have been given by Hack et al. 1991, but, in general, the Stark 
tuning coefficients are calculated numerically. Dipole moments of electronically 
excited polyatomic molecules with C,,-symmetry were measured by Vaccaro et al. 
(1989: H,CO) and by Brucat and Zare (1985 NO,) who used combined electric and 
magnetic fields. To determine a dipole moment vector that is not directed along one of 
the principal axes of the molecule, the fact is used that the Stark tuning of different 
rotational states depends to a different degree on the dipole vector components pi 
through the functions Bi(J) in equation (20). Therefore, it is possible to determine 
magnitude and orientation of the dipole moment vector by analysing a set of selected 
rotational states. This approach was successfully used in the work on propynal in the S, 
electronic state (Schmidt et al. 1988). 

Furthermore, the rotational constants of vibronically excited, short-lived species 
can be determined together with the dipole moment provided the theoretical 
expressions for the BXJ) are known. Such a selfconsistent determination of structure 
parameters has recently been performed on vibrationally excited S,-propynal (Hack 
et al. 1991) and has demonstrated that quantum beat spectroscopy on a few selected 
rotational levels can provide molecular parameters with an accuracy that would 
require a long progression of rotational lines resolved beyond the Doppler width in 
frequency-domain spectroscopy. 

3.3. Quantum beats between states of opposite parity 
While for well-resolved dipole coupled levels a quadratic Stark effect is observed, 

almost degenerate levels with opposite parity show a linear Stark effect. This latter case 
is exemplified by the two fine structure levels  IS^/^) and 1 pl/,) of hydrogen with energies 
Am, and Am,, respectively. The presence of other fine structure levels and the hyperfine 
structure will not affect substantially the following arguments. Let A be the zero field 
separation of the two levels, i.e. the Lamb shift, and V the coupling matrix element 

I/= <Sl/,lP4 PI/,)- (23) 

In the two-level approximation and after application of the field, the eigenstates may be 
written as 

Irl/l>=a(as,,z> +b(€)lP1/2), 

1$2> = - b ( m l / d  +a(&)l PI/,)? 
(24) 
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with the energy eigenvalues 

El ,  = 3 h(o,  + wP) & 3 ( A  + 41 V12)1’2. (25) 

The field-induced parity mixing implies that transitions from the Is) ground state to 
both eigenstates I I ) ~ , ~ )  are allowed in the field and a linear Stark effect is predicted if 
41 1/l2 >>A ’. As a consequence, coherences can be created not only between m-levels of a 
single state (pure Stark quantum beats) but also between the states 
Thus, the beat frequencies provide the dipole component p which connects the parity 
eigenstates and the separation d according to the Stark shifts given in equation (25). 
Hence, it is the symmetry-breaking effect of the electric field that makes zero-field 
parameters amenable to measurement. 

The superposition of the eigenstates is prepared by laser excitation or alternatively 
by a sudden switching of the field by which the excited, metastable Isl/z) state is 
quenched. In the latter case the superposition of excited states is described by the 
sudden transformation inverse to that of equation (24) rather than by the dynamical 
evolution during the excitation time. Interference experiments of this kind were 
suggested by Series (1964) in order to measure Lamb shifts and fine-structure 
separations and they have subsequently been performed in beam spectroscopy 
(Bashkin et al. 1965, van Wijngaarden et al. 1976). 

A situation similar to that of hydrogen is met in diatomic molecules if they are 
excited into singlet states for which the coupling of molecular rotation R to the 
electronic angular momentum L(S = 0) lifts the degeneracy in the internal projection 
quantum number f A of the total angular momentum J =  R+ L. The levels of such a 
A-doublet, denoted le) and I f ) ,  have opposite parity and the A-splitting and dipole 
moment can be determined by Stark quantum beat experiments (Onishchuk and 
Podgoretskii 1968). For ‘I’I states (1A1= 1) the dipole matrix element V, and the 
A-splitting A,,  to be inserted in equation (25) are given by (Derouard and Alexander 
1986) 

and 

PbM 
J ( J + l ) ’  

V,= (JMelpblJMf) =- 

A&) = qJ(J  + 1). 

Electric field mixing occurs for states with IMI>O and, therefore, J different beat 
frequencies are expected after z-polarized coherent excitation of the A-doublet states 
(cf. figure 7 (a)). According to equations (25) and (26) the beat frequencies are 

(27) 
1 

v M = ~  (A~~(J)+41VM12)1’2, 

and have been used by Derouard et al. (1989) to determine the vibrational dependence 
of p and the A-doubling constant q of NaK (B’ll). 

In asymmetric top molecules the states IJ f KM )(K > 0), degenerate in the 
symmetric top, are split by the ‘asymmetry splitting’ (Wang 1929, Herzberg 1966) 

to lowest order in ( B  - C ) / ( A  -*(B + C)). The rotational constants A 3 B 3 C are taken 
with respect to the principal axes of inertia a, b, c. The approximate eigenfunctions or 
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I M I  

0 20 40 60 V/cm 

(4 
Figure 7. Stark quantum beats between states of opposite parity. (a) n-polarized excitation of 

A-doublet states with J = 3 in an electric field gives rise to three AM = 0 beat frequencies as 
indicated by arrows. (b) a-Polarized excitation of asymmetry doublet states with J =  2 
gives rise to the A M = 2  quantum beat frequencies denoted in accordance with equation 
(31). Only one of the two possible beats v, and v, are shown. 

Wang functions of a near symmetric prolate top ( B z  C in 1‘-convention of King et al. 
1943) are given by 

These parity eigenstates are coupled by the electric interaction matrix element 

(Townes and Schawlow 1955). The two-level approach of equation (25) is valid for 
vibronic singlet states not being mixed to other rotational states. Schmidt et al. 
determined the asymmetry splitting (1987) and the dipole component pu (1988) of 
propynal HCCCHO and its deuterated isotopomer HCCCDO in different vibrational 
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Quantum beat spectroscopy 301 

S,-states. The AM = 2 quantum beats of the asymmetry doublet states with J = 2 = K 
have frequencies according to equation (25) and equations (28) to (30) 

ha= IE, (M=2)-E, (M =O)l = + ( A ;  +41 Vz12)1’z - i A z ,  

hvb= IE+(M= 1)- E , ( M  = 1)1 = ( A :  +41VJ2)1/2, 
hv, = JE f ( M  = 2) - E f ( M  = 0)l = 3 ( A  2” + 41 VzJ2)1’2 + 4 A 2. 

(31) 

The frequency v, corresponds to the pure AM = 2  quantum beat and is equal for both 
states 1 + 1 , 2 )  while vb and v, are due to coherences between these states. Figure 7 ( b )  
shows the relevant level scheme, while the corresponding spectrum measured at two 
field strengths is displayed in figure 8. The asymmetry splitting is given by the frequency 
difference (Schmidt et al. 1987) 

(32) 

lp,bl =q1V2~=$h(v,vc)l’z. (33 )  

A 2 = h(v, - vJ, 
while the dipole component pa can be extracted from the relation (Hack et al. 1991) 

It should be emphasized that no molecular parameters enter this direct measurement of 
IPaI. 

0 10 20 30 MHz 

Figure 8. Measured (top) and calculated (bottom) Stark quantum beat spectra of an asymmetry 
doublet state J = 2, K = 2. The beats correspond to the level scheme depicted in figure 7 (b) 
and were measured on deuterated propynal HCCCDO at field strengths (a) B = 20 V cm- ’ 
and (b) B=80Vcm-’ (Huber 1990). 
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In concluding this section we would like to re-emphasize the high sensitivity of the 
quantum beat frequencies to the electric field strength as demonstrated in figure 8. It is, 
therefore, conceivable that quantum beats of selected states in molecules could be 
utilized as molecular ‘optical voltmeters’ for accurate in situ measurements of field 
strengths in plasma physics similar to the method reported by Moore et al. (1984). 

3.4. Fine-structure, hyperJine-structure and rotational quantum beats 
As opposed to the Stark and Zeeman quantum beats discussed above, fine- and 

hyperfine-structure quantum beats are observed without an external field (Macek 
1969). These zero-field quantum beats reflect the ‘natural splittings’ due to intra- 
molecular couplings of degenerate zero-order states. Hyperfine structure is caused by 
the coupling of nuclear spin Iwith electronic spin Sthrough the classical dipole-dipole 
interaction of the associated magnetic moments and the quantum mechanical Fermi 
contact term. The latter is proportional to the electronic spin density at the nucleus and 
is expected to dominate whenever there is an appreciable contribution of g-character to 
the electronic wave function. 

Fine structure in atoms arises from electronic spin-orbit coupling. In poly-atomic 
molecules this interaction will affect triplet states ( S =  1) and it will couple singlet to 
triplet states since S is no longer conserved. Before we review quantum beat 
experiments guided by the underlying molecular level structure, we address the 
polarization and angular properties of the emitted fluorescence. Dealing with angular 
momentum superposition states, we adopt the spherical tensor notation which is 
particularly useful in the field-free case. To this end, we separate the angular 
momentum part Ijm) from the molecular eigenfunctions In), viz. In) = lu)ljm), so that 
the fluorescence intensity described by equation (1 3) takes the form 

The dipole interaction pc appearing in the operators p of equation (14) and Ode, of 
equation (12) is expressed in spherical tensor components as 

p € = c  (- l)spFL-s€s. 
S 

(35) 

For molecular problems the components of p are taken relative to a molecule fixed 
coordinate system rather than to the laboratory frame. If the rotation of the laboratory 
to the molecule fixed axes is described by the Eulerian angles (crpy), which are taken as 
the dynamical variables of molecular rotation, the components ps are expressed as 

The component pr acts only on the vibronic part Iu) of the molecular wavefunction 
while 9;r acts on l jm)  which includes the rotational degrees of freedom. Applying the 
Wigner-Eckart theorem, the matrix elements of pc are factorized into a geometric part 
which contains the orientation quantum numbers and a reduced matrix element 
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Quantum beat spectroscopy 303 

with the phase convention adopted from Lindner (1984). In view of equation (36) the 
reduced matrix element for molecules can further be decomposed into a vibronic and 
an angular momentum part 

where the subscript r on 9’ indicates that the matrix element is not yet reduced with 
respect to the internal orientation. 

The matrix elements of the detection operator @det of equation (12) will be 
separated similar to the ones given in equation (37). Assuming that the detection 
efficiency t i f  does not depend on m f ,  the sum 

constitutes a scalar operator (Fano and Macek 1973) and the polarization and dipole 
operators in Ode, can be recoupled to give 

Casting its matrix elements into the form 

the polarization tensor (cf. table 1) is given by (Lindner 1984) 

Table 1. Explicit expressions for the polarization tensors, defined in equation (42). 

The angles (0, @) fix the direction of the photon propagation. The transverse polarization is 
expressed through the Stokes parameters P,, P ,  and P ,  with which the polarization density 
matrix reads 

I( 1 + ~ ,  -P,+~P, 
2 -Pl-iP, 1-P, 

The special case of linear polarization (P3=O)  or left and right circular polarization 
( P 3 =  & 1, P , = O = P 2 )  are readily obtained. 
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and the reduced matrix element is obtained as 

In molecular applications this expression can further be rearranged by applying 
equation (38). 

A decomposition completely analogous to equation (41) can be given for the matrix 
elements of p(t) in equation (34) after laser excitation, provided the ground state 
population is isotropic 

(u;  jmlp(O)Iu’; j’m’) = 1 P$‘*(cL) 
Q’q’ 

For the corresponding tensorial decomposition of p(0) following impact excitation of 
atomic fine- and hyperfine-structure beats the reader is referred to Ellis (1973) and 
Fano and Macek (1973). 

Without an external field the energy eigenvalues are degenerate with respect to the 
m-quantum numbers and the explicit dependence on m and m‘ in equation (34) can be 
eliminated using the orthogonality relation for the 3 j-symbols appearing in equations 
(41) and (44). The expression for the fluorescence equation (34), then, takes the form 

I ( t )  = 1 ( - 1)4P!?q(cD)Pf(tL) 1 1 6( jj ’Q) 
Qq v j  v’f 

x <u;j IIMQ(g)IIu’;j’)(u’;j’IIMQ(~)IIu; j )  

x exp (- i(wOj - oVTi.)t -3 (yuj + yuzi.)t). (45) 
The polarization and the spatial distribution of the emitted fluorescence are expressed 
by the scalar product 

IZ:(Q; cD, 6’): = 1 (- ~)‘P?,<E”)P~(C“), Q = 0,1,2. (46) 
4 

which is independent of molecular variables. This expression has been derived and 
discussed by Luypaert and van Craen (1977) and others. Its main features are as 
follows: 

(1)  Isotropic emission (Q = 0) is due to states with equal angular momenta ( j  = j ’) 
according to the triangular condition 6( jj’Q). It is unpolarized since 
IZ:(O; rD, cL)= 1 and unmodulated for the diagonal terms (u  = u’). However, 
states of different energy (u#u’) give rise to modulations which are called 
molecular quantum beats (see figure 9). 

(2) Polarization tensors of rank Q = 1 represent circularly polarized light (cf. table 
1). Only the angle 0 enclosed by the directions of the laser beam and towards 
the detector is relevant for the angular distribution 

n:(l;c”,cL)= + ~ c o s o .  (47) 
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I 
0 10 20 30 

Frequency (MHz) 
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-; _ _ - -  
0 
1 

Ik, F) 

Figure 9. Hyperfine quantum beats. The level scheme illustrates the mixing of Born- 
Oppenheimer hyperfine levels of a singlet Is, F )  and a triplet It, F )  state to molecular 
eigenstates Ik, F )  and Ik', F )  by spin-orbit interaction. The hyperfine-coupling follows 
Hund's case b,, in which two inequivalent nuclear spins are coupled in sequence to J = 1 to 
give F ,  = J & 1/2 and F = F ,  & 1/2. Isotropic molecular quantum beats between states Ik, F )  
and Ik', F )  with equal F quantum numbers are exemplified by the dashed arrow. The full 
arrows represent polarized hyperfine quantum beats illustrated by the spectrum on the top 
which was obtained from the predominantly triplet eigenstate Ik', F )  (Bitto et al. 1990). 
The four lines correspond to coherencies obeying the triangular condition 
IF - F'I < Q = 2 < F + F' imposed by the linear polarizations. 

The sign reflects the relative circular polarization. Thus, right and left circular 
polarized emissions are opposite in phase and no beats are observed in 
unpolarized detection. Owing to the 0 dependence of the radiation pattern, the 
total polarized emission is also unmodulated. 

(3) The aligned contribution (Q = 2) can be expressed as 

@(2; cD, 8) = A (1 -+sin2 OD( 1 + cos 2$D)). (48) 
If the laser is circularly polarized, then A = 1/2 and OD refers to the laser beam 
direction; if the laser is linearly polarized, then A = - 1 and OD refers to the 
polarization direction. In this case the result is commonly expressed by the 
Legendre polynomial 

n32 ;  cD, 6") = 2P2(cos OD"), (49) 
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(4) 

( 5 )  

where gDL refers to the relative orientation of the linear polarizations. 
Modulations can be observed with an unpolarized or circularly polarized 
detector (when cos 24D = 0) except for the magic angle OD = 547". With a linear 
detector polarization the modulation is suppressed for the magic angle between 
cD and the reference axis defined as above. The total aligned emission is 
unmodulated. 
Expression (46) transforms like a scalar since we started from an isotropic 
molecular sample prior to excitation. If the molecules were aligned, however, 
tensors I7f of rank O <  K <4  would appear. This situation, commonly met in 
LIF experiments, is discussed by Greene and Zare (1983). 
The presence of a homogeneous external field destroys the isotropy but 
preserves axial symmetry. Therefore, tensors l7: will appear in the correspond- 
ing expression as discussed by Hese et al. (1977) and Hack et al. (1991). 

The modulation of the vector and tensor parts (Q = 1,2) of the emission mirrors the 
modulation of the matrix elements of the tensor M a w .  Relating these matrix elements 
to orientation and alignment, Fano and Macek (1973) interpreted them as expectation 
values of angular momentum operators, thereby tracing the modulation to a reversible 
exchange of angular momentum between internal degrees of freedom. Recalling, for 
example, that F= J + l i s  a constant of the motion, the measured periodic loss of the 
electronic orientation ( J )  must be compensated by a periodic gain in the unobserved 
nuclear spin orientation ( I )  which oscillates 180" out of phase. 

We now turn to specific fine- and hyperfine-structure quantum beats. For problems 
involving fine-structure, the atomic states I j m )  introduced in equation (34) are 
identified with I(LS)JM,). An extensively studied example of these fine-structure zero- 
field quantum beats (Haroche 1976) are Rydberg D states of sodium (L=2; J = $ ,  $) 
which are coherently prepared by two-step laser excitation (Haroche et al. 1974). The 
measurements yielded fine-structure intervals and, in conjunction with an electric field, 
the ordering of the fine-structure levels (Fabre e f  al. 1975) and their strong 
polarizability (Fabre and Haroche 1975). These experiments have been analysed in a 
more general context by Silverman et al. (1978b). 

Atomic hyperfine-structure quantum beats have been used by Haroche et al. (1973) 
to demonstrate the power of the method in determining hyperfine-structure splittings. 
The relevant formula for the signal has been derived by Luypaert and van Craen (1977) 
and it parallels equation (45) for the substitution I jm)+l(JI)FM,).  For fixed J and I 
values the beats are modulated with frequencies oF - oF'. Theoretical expressions for 
these energy differences allowed Krist et al. (1977) to determine the magnetic 
interaction constant and the nuclear quadrupole moment responsible for the 
hyperfine-structure in sodium. 

For molecules the representation of hyperfine states does not often follow a simple 
algebraic coupling scheme. Should spin-orbit and hyperfine interactions be compar- 
able in strength, J is no longer a good quantum number and an explicit diagonalization 
of the Hamilton matrix is mandatory. If, however, one of Hund's coupling cases is 
adequate, the evaluation of the reduced matrix elements in equation (45) is possible by 
means of Wigner transformations. This has been illustrated for Hund's case b,, where 
two inequivalent nuclear spins are coupled in sequence to give the total angular 
momentum and where the states Ijm) are represented by (Dubs et al. 1985) 
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Equation (45) was used in an experiment by Dubs et al. (1986b) on the excited levels 
I((( 10)1$)F,$)FM,) of propynal and was found to describe the polarization behaviour 
very well. 

The coupling scheme of equation (50) fails if spin-orbit interaction mixes hyperfine 
levels of singlet ( S , )  and triplet (TI) states to molecular eigenstates. Under these 
circumstances, illustrated in figure 9, an analytic description of the beat frequencies 
requires the knowledge of all zero order states involved in order to determine the 
eigenvalues of the Hamilton matrix. This was performed successfully by Bitto et al. 
(1990) for the determination of pure triplet dipole-dipole and Fermi contact coupling 
constants in propynal. The hyperfine quantum beats measured in the predominantly 
triplet eigenstate by these authors are reproduced in figure 9. 

In dense molecular spectra hyperfine levels of different molecular eigenstates ( k )  
and Ik') are easily excited coherently and, as discussed above, molecular quantum beats 
between states of equal F-values can be observed. These beats were used by Dubs et al. 
(1985) to measure singlet-triplet coupling matrix elements between zero-order states 
Is; F M , )  and It; FM,). In addition, the introduction of a magnetic field allowed them to 
determine g-values in much the same way as discussed in section 3.2 in connection with 
pure Zeeman quantum beats (Muhlbach et al. 1984, Dubs et al. 1985). Assuming a 
linear Zeeman effect the quantum beat frequencies tune in accordance to 

haF(B, M,)=ha,(0)+~LSlgk-gk'lMFB. (51) 

Figure 10 illustrates the situation for two states with F = 2  coupled to molecular 
eigenstates which are split in the magnetic field B. 

Finally, we highlight the application of equation (45) in connection with pure 
rotational quantum beats where the states Ijm) are symmetric top I J K M )  or 

B 

I 
I 

1 I k , F  MF) 
I 

Figure 10. Zeeman effect on molecular quantum beats. The example shown corresponds to the 
molecular quantum beat between states of F= 2 indicated by the dashed arrow in figure 9. 
The magnetic field B splits the Zeeman sublevels Ik, F M , )  of the eigenstates according to 
their g-values giving rise to (2F+ 1) different beat frequencies w p  
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asymmetric top I J z M )  functions (Felker and Zewail 1987). Starting from a ground 
state IJ,K,M,), a superposition of states IJKM) can be excited where J = J,, J, 1 
and, in the case of a parallel type transition, K = K , .  The three expected beat 
frequencies are v1 = 2(J, + 1)B, v 2  = 2J,B and v g  = v 1  + v 2  when expressed by the 
rotational constant B. Since in large molecules the rotational structure is very dense, 
many ground state levels J ,  will be populated even for molecules cooled by free jet 
expansion. Thus, the observed signal is an incoherent superposition of many beat 
patterns from different ground states. Although the beat frequencies are different, they 
are integer multiples of the fundamental d0’=2B. This fact gives rise to constructive 
interferences (recurrences) at times tn = n/2B or tn = n/(B + C )  for slightly prolate top 
molecules as was demonstrated in the fluorescence decay of t-stilbene (Felker et al. 
1986, Baskin et al. 1986, Baskin et al. 1987). It should benoted that the recurrences here 
are due to the ensemble average and not due to single molecule interference. 

3.5. Multilevel quantum beats 
The applications of molecular quantum beats discussed so far were of a 

spectroscopic nature. The determination of molecular structure parameters and 
intramolecular coupling constants extracted from quantum beat frequencies required a 
theoretical description of the excited level structure in terms of these parameters. Zero- 
field quantum beats of polyatomic molecules, however, are often difficult to interpret 
since the assignment of the levels involved and even the nature of the coupling between 
these levels is uncertain. To each Borr-Oppenheimer singlet excited state Is) there 
corresponds a set of molecular eigenstates {In)} as a result of the intramolecular 
coupling to a set of quasi isoenergetic Born-Oppenheimer ‘dark’ background states 
{ l l ) } .  Expanding the molecular eigenstates as 

we may take the number N of interacting states to characterize the ‘spectroscopic 
environment’ of state Is). In the ‘small molecule’ limit (Robinson 1967), N is a small 
number and excitation of state Is) involves only one or a few molecular eigenstates. 
Hence, the exponential decay of the fluorescence will contain a few (if any) oscillations 
which appear as well-resolved lines in the quantum beat spectrum. In the ‘large 
molecule’ limit, N is large so as to correspond to a continuous set of background levels. 
The decay, showing no distinct oscillations, will be accelerated owing to the dissipative 
nature of the continuum. By means of time-resolved recording of the fluorescence, 
energy flow and internal vibrational energy redistribution (IVR) to non-radiative, 
dissipative degrees of freedom can be directly studied (Freed and Nitzan 1980, Felker 
and Zewail 1988). 

In the following, the case between the ‘small’ and ‘large’ molecule limits, the so- 
called ‘intermediate’ case, is considered. In spite of the fact that polyatomic molecules in 
the excited S,-state have a high density of background So- or TI-states, they still can 
display ‘small’ or ‘intermediate’ molecule behaviour. This indicates that in addition to 
dissipative continua a finite number N of non-radiative, non-decaying background 
states strongly couple to the excited rovibronic singlet state (Nitzan and Jortner 1972, 
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Jortner and Mukamel 1974, Tramer and Voltz 1979). Adapting equation (45) to 
molecular quantum beats (as mentioned in item (I)), we obtain 

x exp(-i(ouj-ou~~)t-~((yuj+yu~y)t).  (53) 
Since by assumption only the singlet part Isj) of the molecular eigenstate of equation 
(52) is coupled to the ground state, the reduced matrix element is given by 

and is proportional to the ‘singlet character’ of the eigenstates involved. The remaining 
matrix element, being diagonal in s and j ,  is real. Hence, the fluorescence equation (53) 
is expressed as 

I ( t )=C <sj IIMo(dllsj)<sj IIMOdf)lls.> 
j 

x C Ics j ;  u, jI I csj; u jI cos (w u j  - mu,j)t exp ( - 3 (7 u j  + ~ u ,  j)S- (55) 
uu’ 

The sum over j reminds us of the fact that the beat pattern is very often an incoherent 
superposition of decays from states with different j quantum numbers, e.g. from 
hypefine structure. A sum over s is absent since we considered excitation of a single 
Born-Oppenheimer state. Moreover, the broad-band assumption implicit in the 
derivation of equation (53) is equivalent to the excitation of the ‘doorway state’ Is) 
(Rhodes 1983) since, for t =0, each of the sums over v and or is unity. If, however, the 
‘spread of oscillator strength’ is comparable to the coherence width of the laser, the 
pulse properties must properly be taken into account. 

For the subsequent discussion we split the sum over u and ur in equation (55) into 
unmodulated and modulated parts and dismiss the sum over j 

The damping rates y n  are, in general, given by complex expressions involving the matrix 
elements of H and A in the master equation (1 5) as shown for a simple model system by 
Lendi (1980). 

In the weak coupling case, the singlet character is concentrated on one particular 
eigenstate, say In = 0), whence 

Then equation (56) reduces to 

r(t) N Icsn12 ~ X P  ( - - ~ o t )  + 2 C Icsn12 cos ( o n  - ~ 0 ) t e x p  ( -3  YO^). (58) 
n > O  

Accordingly, the modulation depth is proportional to Icsn12 and provides the coupling 
matrix elements in lowest order perturbation theory (Chaiken et al. 1981a, Stafast et al. 
1983). 
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Depending on the nature of the background states, the intramolecular coupling is 
due to vibronic interaction or spin-orbit interaction. Beats induced by internal 
conversions (S, -So interaction), detectable only in small molecules where the state 
density is not too high, have been reported for SO, (Sharfin et al. 1982, Ivanco et al. 
1983). More frequently, beats in polyatomic molecules are due to intersystem crossing 
( S ,  - TI interaction). Assuming that an individual rovibronic singlet level couples to N 
triplet le-gels the fluorescence decay of equation (56) will exhibit N ( N  + 1)/2 distinct beat 
frequencies corresponding to the energy differences between the N + 1 eigenstates 
involved. The complexity of the beat spectrum is, therefore, a direct measure of the 
number N and quantum beats can be used as a state counting method. The three-level 
case ( N  = 2), for example, will yield three frequencies, one of which is just the sum of the 
other two, a feature very similar to the one observed in hyperfine-structure beats 
(Haroche et al. 1973) (for an instructive example see, e.g., van der Meer et al. 1982). If 
combination frequencies can be identified in the quantum beat spectrum and their 
relative intensities match the conditions imposed by equation (56) the underlying level 
structure can eventually be recovered in a way similar to that used in high-resolution 
absorption spectroscopy (Kommandeur 1988). The limitation to this combinatory 
procedure is imposed by the unknown number of incoherently superposed quantum 
beat decays. 

The appearance of more and more lines in the quantum beat spectrum with 
increasing N reflects the increasing number of cosine terms in the time evolution of 
equation (56). At t = O  all these terms add constructively, but shortly afterwards they 
interfere destructively due to the phase mismatch of the many different frequencies. 
This leads to a fast disappearance of the second term in equation (56), often referred to 
as the coherent term, while a slow decay governed by the first term, the incoherent term, 
persists at longer times. This biexponential decay was theoretically derived among 
others by Bixon and Jortner (1968) (see also Delory and Tric 1974, Lahmani et al. 1974, 
van der Werf and Kommandeur 1976) and has experimentally been observed in many 
molecules (cf. table 2). To exemplify this behaviour we may assume that the oscillator 
strength is equally distributed among all eigenstates, i.e. we use the egalitarian model 
(Lahmani et al. 1974) 

In this case the intensity equation (56) is expressed as 

I(t) - ( N  + 1) exp (- p )  + 1 cos (w, - w,,)t exp (- p) .  

Z(0)-(N + 1) + N ( N  + 1) =A’”“+ A C O h ,  

(601 
n f n ‘  

At time t = 0 we have 

(611 

representing the sum of incoherent and coherent contributions while for later times the 
coherent term has averaged out representing the nonradiative decay. The fraction 

yields the number of excited eigenstates for this simple model. 
More realistic molecular models require numerical simulation studies to predicl 

characteristic features of the time behaviour (Delory and Tric 1974, Chaiken et al. 
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Table 2. Some polyatomic molecules displaying singlet-triplet quantum beats and 
biexponential decay. 

Molecule 

Anthracene 

Biacetyl 

Butynal 

Glyoxal 

Methylglyoxal 

Propynal 

P yrazine 

Pyrimidine 

Quinoxaline 

s-Triazine 

References 

Lambert et al. (1981) 
Zewail et al. (1982) 

van der Wed and Kommandeur (1976) 
Chaiken et al. (1979, 1981a) 
Henke et al. (1981) 

Miihlbach and Huber (1986) 
Bitto et al. (1989) 

van der Werf et al. (1975) 

Coveleskie and Yardley (1975, 1976) 
van der Werf et al. (1976) 
Chaiken et al. (198la) 
Gurnick et al. (1981) 
Chaiken and McDonald (1982) 

Stafast et al. (1983) 
Bitto et al. (1984) 

Frad et al. (1974) 
ter Horst et al. (1981) 
Felker et al. (1982) 
van der Meer et al. (1982) 
Kommandeur et al. (1987) 
Kommandeur (1988) 

Jameson et al. (1 98 1) 
Okajima et al. (1982) 
Saigusa and Lim (1982) 

McDonald and Brus (1974) 
Soep and Tramer (1975) 

Nott and Selinger (1978) 
Ohta and Baba (1981) 
Saigusa and Lim (1983) 

1981b, Gurnick, et al. 1981, Khoo et al. 1983). While randomly distributed levels give 
rise to an unstructured slow decay component, correlated spectra, for which small beat 
frequencies are absent due to level repulsion, show a ‘correlation hole’ (Leviandier et al. 
1986, Zimmermann et al. 1987). Such a depression in the fluorescence intensity right 
after the fast decay component has been detected by Bitto et al. (1989) and it 
demonstrates that level correlation can be directly observed in the time domain. 

The number N of interacting background states can be related to the density pt of 
triplet states. With increasing pt the chance of finding interacting states in the vicinity of 
the excited singlet state increases. It is shown in figure 11 that with higher and higher 
vibrational excess energy pt increases and the spectroscopic feature of the molecule 
turns, as expected, from small to intermediate (Miihlbach and Huber 1986). 

Besides this unselective dependent of N on pt the selection rules, governing 
intersystem crossing, depend on the excited state quantum numbers and symmetry. 
For this reason, N may show a strong, seemingly uncorrelated state-to-state 
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time Ips1 
Figure 11. Time-resolved fluorescence decay curves of selected S ,  vibronic bands of butynal 

CH,CCCHO. With increasing vibrational excess energy and thus with increasing state 
density pt the distinct quantum beat structure evolves into a biexponential decay 
(Muhlbach and Huber 1986). 

dependence on rotational quantum numbers (Watanabe et al. 1983b) or a linear 
correlation with J (ter Horst et al. 1981, Saigusa and Lim 1983, Matsumoto et al. 1983, 
Amirav and Jortner 1986). The evolution from a relatively low to a relatively high 
density of states may, therefore, occur over only a few J of rotational excitation 
indicating the break-down of simple selection rules. An instructive example of such a 
behaviour has recently been observed for propynal (Willmott et al. 1991) and is shown 
in figure 12. 

4. Conclusions 
Laser quantum beat spectroscopy is based on the superposition principle of 

quantum mechanics. A short laser pulse coherently excites the molecule into a 
superposition of energy eigenstates which are located within the coherent bandwidth of 
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20 40 60 80 100 
(4 

0 20 40 60 80 100 
Frequency (MHz) 

(4 
Figure 12. Fourier spectra of quantum beat decays for two rotational states, 1202) (a) and 1624) 

(b), of a single vibronic band of propynal. The increase of the number of beat lines from a 
state with J = 2 to one with J = 6 illustrates the increase of the density of coupling states 
which is due to the break-down of the AK selection rule (Willmott et a/. 1990). 

the laser. The emissions of the different molecular eigenstates interfere and, consequent- 
ly, the time-resolved total intensity is modulated at frequencies corresponding to the 
differences of the energy eigenvalues. According to this information a time-resolved 
spectroscopic technique becomes available that provides a high energy resolving power 
and a great versatility. The method is essentially Doppler-free since the radiation is 
emitted by single-particle sources and an energy resolution can be achieved which is 
limited only by the lifetime of the excited states. 

The technique of monitoring the time-resolved evolution of well prepared 
superposition states by fluorescence detection or other means opens up the possibility 
to study the dynamics of excited molecular states very directly. The time evolution of 
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the fluorescence, as shown above, mirrors intramolecular processes, which are 
expressed in terms of coupling strengths and level statistics, or intermolecular processes 
like collisional dephasing (Brucat and Zare 1984, Jeys et al. 1984). Thus, quantum beat 
spectroscopy as a method complementary to the frequency domain steady-state 
techniques is an indispensable tool in the study of excited molecular states with regard 
to both their spectroscopic nature in terms of structure parameters, and their dynamics. 
Moreover, the formalism developed in the treatment of quantum beats is readily 
extended to include state selective molecular behaviour and wave packet dynamics. 
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